We apply the technique of compressive sensing (CS) to multiple-input multiple-output (MIMO) radars to estimate the direction of arrival (DOA) of potential targets embedded in cluttered environments using far fewer samples than the Nyquist rate. Specifically, incorporating clutter into the sparse Bayesian learning (SBL) methodology, we devise a novel algorithm for joint estimation of targets’ DOAs, clutter covariance matrix, and noise variance. Furthermore, we develop a low-complexity and fast version of the proposed algorithm, which can be efficiently employed in practice.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint DOA and Clutter Covariance Matrix Estimation in Compressive Sensing MIMO Radar


    Beteiligte:
    Salari, Soheil (Autor:in) / Chan, Francois (Autor:in) / Chan, Yiu-Tong (Autor:in) / Kim, Il-Min (Autor:in) / Cormier, Roger (Autor:in)


    Erscheinungsdatum :

    01.02.2019


    Format / Umfang :

    1543552 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Compressive Sensing-Based Joint Range-Doppler and Clutter Estimation

    Salari, Soheil / Chan, Francois / Chan, Yiu-Tong et al. | IEEE | 2019


    Radar Clutter Covariance Estimation: A Nonlinear Spectral Shrinkage Approach

    Jain, Shashwat / Krishnamurthy, Vikram / Rangaswamy, Muralidhar et al. | IEEE | 2023



    One-Bit Compressive Radar Sensing in the Presence of Clutter

    Zahabi, Sayed Jalal / Naghsh, Mohammad Mahdi / Modarres-Hashemi, Mahmoud et al. | IEEE | 2020


    CSSF MIMO RADAR: Compressive-Sensing and Step-Frequency Based MIMO Radar

    Yao Yu / Petropulu, A. P. / Poor, H. V. | IEEE | 2012