To better regulate traffic flow and reduce the potential impacts due to uncoordinated lane changes, we proposed a real-time optimal lane selection (OLS) algorithm by using the information available from connected vehicle (CV) technology. Such information includes the location, speed, lane and desired driving speed of individual vehicle agents (VA) on a localized roadway. Microscopic traffic simulation studies show that the proposed algorithm can result in both mobility and environmental benefits for the entire traffic system. Specifically, the application of the OLS algorithm reduces the average travel time by up to 3.8% and the fuel consumption by around 2.2%. In addition, the reduction in emissions of criteria pollutants, such as CO, HC, NOx and PM2.5 ranges from 1% to 19%, depending on the congestion level of the roadway segment. Potential extensions of the proposed OLS algorithm are discussed at the end of this paper.
Improving traffic operations using real-time optimal lane selection with connected vehicle technology
01.06.2014
464376 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
British Library Conference Proceedings | 2014
|Real-Time Lane-Wise Traffic Monitoring in Optimal ROIs
IEEE | 2024
|