This paper describes the development of a real-time multiple object detection and tracking system for a small scale UAV. The YOLO deep learning visual object detection algorithm and JPDA multiple target detection algorithm, were selected and implemented. The theory and implementation details of these algorithms are presented. The performance analysis of the system is done on both public dataset and aerial videos taken by UAV.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time Implementation of YOLO+JPDA for Small Scale UAV Multiple Object Tracking


    Beteiligte:
    Xu, Shuoyuan (Autor:in) / Savvaris, Al (Autor:in) / He, Shaoming (Autor:in) / Shin, Hyo-sang (Autor:in) / Tsourdos, Antonios (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    8259491 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking

    Kaufman, Evan / Lovell, T. Alan / Lee, Taeyoung | Springer Verlag | 2016


    Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking

    Kaufman, Evan / Lovell, T. Alan / Lee, Taeyoung | Online Contents | 2016



    Combining IMM and JPDA for tracking multiple maneuvering targets in clutter

    Blom, H. / Bloem, E. / International Society of Information Fusion et al. | British Library Conference Proceedings | 2002