Envisioned for fifth generation (5G) systems, millimeter- wave (mmWave) communications are under very active research worldwide. Although pencil beams with accurate beamtracking may boost the throughput of mmWave systems, this poses great challenges in the design of radio resource allocation for highly mobile users. In this paper, we propose a joint adaptive beam-frequency allocation algorithm that takes into account the position uncertainty inherent to high mobility and/or unstable users as, e.g., Unmanned Aerial Vehicles (UAV), for whom this is a major problem. Our proposed method provides an optimized beamwidth selection under quality of service (QoS) requirements for maximizing system proportional fairness, under user position uncertainty. The rationale of our scheme is to adapt the beamwidth such that the best trade-off among system performance (narrower beam) and robustness to uncertainty (wider beam) is achieved. Simulation results show that the proposed method largely enhances the system performance compared to reference algorithms, by an appropriate adaptation of the mmWave beamwidths, even under severe uncertainties and imperfect channel state information (CSIs).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Beam-Frequency Allocation Algorithm with Position Uncertainty for Millimeter-Wave MIMO Systems


    Beteiligte:


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    565515 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Calibrated Beam Training for Millimeter-Wave Massive MIMO Systems

    Luo, Xingyi / Liu, Wendong / Wang, Zhaocheng | IEEE | 2019


    Anti-Blockage Beam Training for Massive MIMO Millimeter Wave Systems

    Li, Zhaoqiang / Liu, Danpu / Wu, Xiaoyong et al. | IEEE | 2018


    Deep Learning for Fast Beam Tracking using RSRP in Millimeter Wave MIMO Systems

    Zhang, Jiankun / Wang, Hao / Du, Guanglong et al. | IEEE | 2022



    IRS-Assisted Beamspace Millimeter-wave Massive MIMO with Interference-Aware Beam Selection

    Elganimi, Taissir Y. / Elmajdub, Retaj I. / Nauryzbayev, Galymzhan et al. | IEEE | 2022