A blind source separation method based on immune algorithm (IA) is proposed. The first step performs initialization of mixed signals, which estimates the dimension of signals and abstracts principal component information by eigenvalue decomposition. The second step performs separation of sources, where a separate matrix is estimated. The separate matrix is updated by IA and high order statistics (high order cumulates), where contrast function is based on the transformation of four-order mutual cumulates. The effectiveness of proposed method for blind source separation is demonstrated by simulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Blind source separation based on immune algorithm with four-order mutual cumulates


    Beteiligte:
    Hai-Ying Zhang, (Autor:in) / Kun Wang, (Autor:in) / Yong-Xiang Pan, (Autor:in) / Wei Zhang, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    943848 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Communication in automotive CIM environment using cumulates

    Schneider,H.J. / TU Berlin | Kraftfahrwesen | 1986


    SIMS Studies of Planetary Cumulates: Modeling Diogenite Petrogenesis

    Fowler, G. W. / Shearer, C. K. / Papike, J. J. et al. | British Library Conference Proceedings | 1995


    New Blind Source Separation Method Based on Genetic Algorithm

    Liangmin, L. | British Library Online Contents | 2005