Automated driver identification systems are a vital prerequisite for many application scenarios, e.g., personalized in-vehicle services, and improved safety measures tailored to the individual driving style of the current driver. Existing approaches for driver identification typically consider driving maneuvers, e.g., taking a turn or braking, to determine driver specific-patterns. However, the influence of the temporal sequence of a driving maneuver, e.g., decelerating, turning, and accelerating, is widely unexplored. Moreover, the existing studies on automated driver identification are conducted in artificial environments, e.g., in driving simulators, and use extra sensors, e.g., heart rate monitors. In this paper, we divide the temporal maneuver sequence into so-called sub-maneuvers. We find that choosing the right sub-maneuver can improve the driver identification performance by up to 7 percentage points for braking and turning maneuvers. Furthermore, we use data collected in real-world settings only. We collect real-world data from MOIA, a ride-hailing service operating in Hamburg, Germany. We exclusively extract features from the CAN (Controller Area Network) bus, a de-facto standard for in-vehicle information transports. We believe that these realistic settings can pave the way for deployed automated driver identification systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Sub-Maneuver Selection for Automated Driver Identification


    Beteiligte:


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    622237 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver identification based on driving maneuver signature

    NEMAT-NASSER SYRUS C / SMITH ANDREW TOMBRAS / BOER ERWIN R | Europäisches Patentamt | 2016

    Freier Zugriff

    Towards automated flight-maneuver-specific fatigue analysis

    Jylha, J. / Ruotsalainen, M. / Salonen, T. et al. | British Library Conference Proceedings | 2009


    A Generic Approach towards Maneuver Coordination for Automated Vehicles

    Lehmann, Bernd / Gunther, Hendrik-Jorn / Wolf, Lars | IEEE | 2018


    AI Enabled Maneuver Identification via the Maneuver Identification Challenge

    Samuel, Kaira / LaRosa, Matthew / McAlpin, Kyle et al. | ArXiv | 2022

    Freier Zugriff

    Real-Time Driver Maneuver Prediction Using LSTM

    Khairdoost, Nima / Shirpour, Mohsen / Bauer, Michael A. et al. | IEEE | 2020