This paper presents a novel attention mechanism to improve stereo-vision based object recognition systems in terms of recognition performance and computational efficiency at the same time. We utilize the Stixel World, a compact medium-level 3D representation of the local environment, as an early focus-of-attention stage for subsequent system modules. In particular, the search space of computationally expensive pattern classifiers is significantly narrowed down. We explicitly couple the 3D Stixel representation with prior knowledge about the object class of interest, i.e. 3D geometry and symmetry, to precisely focus processing on well-defined local regions that are consistent with the environment model. Experiments are conducted on large real-world datasets captured from a moving vehicle in urban traffic. In case of vehicle recognition as an experimental testbed, we demonstrate that the proposed Stixel-based attention mechanism significantly reduces false positive rates at constant sensitivity levels by up to a factor of 8 over state-of-the-art. At the same time, computational costs are reduced by more than an order of magnitude.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient Stixel-based object recognition


    Beteiligte:
    Enzweiler, Markus (Autor:in) / Hummel, Matthias (Autor:in) / Pfeiffer, David (Autor:in) / Franke, Uwe (Autor:in)


    Erscheinungsdatum :

    01.06.2012


    Format / Umfang :

    3515432 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SPIDER-BASED STIXEL OBJECT SEGMENTATION

    Erbs, F. / Witte, A. / Scharwaechter, T. et al. | British Library Conference Proceedings | 2014


    Spider-based Stixel object segmentation

    Erbs, Friedrich / Witte, Andreas / Scharwaechter, Timo et al. | IEEE | 2014


    Learning Stixel-based Instance Segmentation

    Santarossa, Monty / Schneider, Lukas / Zelenka, Claudius et al. | IEEE | 2021


    LEARNING STIXEL-BASED INSTANCE SEGMENTATION

    Santarossa, Monty / Schneider, Lukas / Zelenka, Claudius et al. | British Library Conference Proceedings | 2021


    A Stixel-Based Stereo Perception for Multi-Robot Systems

    Narsimlu, K. / Das, Anweshan / Dubbelman, Gijs | TIBKAT | 2023