Cyber-security on airborne systems is becoming an industrial major concern that arises many challenges. In this paper, we introduce a generic security monitoring framework for autonomous detection of cyber-attacks on airborne networks based on unsupervised machine learning algorithm. The main challenge of anomaly detection with unsupervised techniques is to have an accurate detection since they tend to produce false alarms. After evaluating the suitability of the One Class SVM, we propose some hints to improve detection accuracy of the monitoring framework by collecting information from the airborne architecture.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generic and autonomous system for airborne networks cyber-threat detection


    Beteiligte:


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    603157 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Generic and Autonomous System for airborne networks cyber-threat detection

    Gil Casals, Silvia / Owezarski, Philippe / Descargues, Gilles | IEEE | 2013

    Freier Zugriff

    Cyber Security and Threat Analysis in Autonomous Vehicles

    Dash, Siddhant / Azad, Chandrashekhar | Wiley | 2022


    Satellite networks face growing cyber threat

    Morring, Frank | Online Contents | 2014


    Cyber threat panel

    Vout, Paul | IEEE | 2012

    Freier Zugriff

    Autonomous airborne wireless networks

    Imran, Muhammad Ali ;Onireti, Oluwakayode ;Ansari, Shuja | TIBKAT | 2021