In addition to localization and mapping, current challenges faced by driverless (autonomous) car parks encompass computational complexity, resulting in elevated CPU utilisation and substantial memory consumption. This paper presents a memory-efficient Spike-Time-Dependent Plasticity (STDP) approach for future driverless car park infrastructure (DCPI). The proposed method utilizes self-organized mapping (SOM) classification and memory optimization techniques to analyze traffic occupancy trends. Results from geospatial data mining show optimised memory usage for vacant slots and trajectory mining clusters. Additionally, the impact of lateral suppression on STDP is demonstrated, highlighting the usefulness of STDP in managing complex memory scenarios in DCPI. Results show that STDP provides a robust neuromorphic scheme for lightweight memory utilisation particularly for tasks requiring precise timing and coordination.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Memory-Efficient Spike-Time-Dependent Plasticity for Future Driverless Car Park Infrastructure


    Beteiligte:


    Erscheinungsdatum :

    01.11.2023


    Format / Umfang :

    4208104 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicles for driverless self-park

    PENILLA ANGEL A / PENILLA ALBERT S | Europäisches Patentamt | 2025

    Freier Zugriff

    Vehicles for driverless self-park

    PENILLA ANGEL A / PENILLA ALBERT S | Europäisches Patentamt | 2023

    Freier Zugriff

    VEHICLES FOR DRIVERLESS SELF-PARK

    PENILLA ANGEL A / PENILLA ALBERT S | Europäisches Patentamt | 2022

    Freier Zugriff

    VEHICLES FOR DRIVERLESS SELF-PARK

    PENILLA ANGEL A / PENILLA ALBERT S | Europäisches Patentamt | 2024

    Freier Zugriff

    Methods and vehicles for driverless self-park

    PENILLA ANGEL A / PENILLA ALBERT S | Europäisches Patentamt | 2020

    Freier Zugriff