In the paper, research is focused on a combination of artificial neural network and Kalman filtering theory with application to real-time travel-time prediction model. ANN forecasters and Kalman filtering can model the complicated relationship between travel-time and traffic volume in related links. To enhance the prediction accuracy of these models, a nonlinear combination prediction approach of these two models is proposed based on wavelet networks. The performance of the novel model is tested by real detected traffic data or the links in the urban road networks. The results indicate that combination strategies based on the wavelet network outperform the other approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear combination of travel-time prediction model based on wavelet network


    Beteiligte:
    Sheng Li, (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    307724 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    NONLINEAR COMBINATION OF TRAVEL-TIME PREDICTION MODEL ON WAVELET NETWORK

    Li, S. / IEEE | British Library Conference Proceedings | 2002



    Bayesian Combination of Travel Time Prediction Models

    van Hinsbergen, C. P. IJ. / van Lint, J. W. C. | Transportation Research Record | 2008



    TRAVEL TIME PREDICTION PROGRAM, TRAVEL TIME PREDICTION DEVICE, AND TRAVEL TIME PREDICTION METHOD

    NISHIMURA SHIGEKI | Europäisches Patentamt | 2018

    Freier Zugriff