The capability of human identification in specific scenarios and in a quickly and accurately manner, is a critical aspect in various surveillance applications. In particular, in this context, classical survaillance systems are based on videocameras, requiring high computational/storing resources, which are very sensitive to light and weather conditions. In this paper, an efficient classifier based on deep learning is used for the purpose of identifying individuals features by resorting to the micro-Doppler data extracted from low-power frequency-modulated continuous-wave radar measurements. Results obtained through the application of a deep temporal convolutional neural networks confirms the applicability of deep learning to the problem at hand. Best obtained identification accuracy is 0.949 with an F-measure of 0.88 using a temporal window of four seconds.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Gait Recognition using FMCW Radar and Temporal Convolutional Deep Neural Networks


    Beteiligte:
    Addabbo, Pia (Autor:in) / Bernardi, Mario Luca (Autor:in) / Biondi, Filippo (Autor:in) / Cimitile, Marta (Autor:in) / Clemente, Carmine (Autor:in) / Orlando, Danilo (Autor:in)


    Erscheinungsdatum :

    01.06.2020


    Format / Umfang :

    1786200 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Capturing Head Poses Using FMCW Radar and Deep Neural Networks

    Kumchaiseemak, Nakorn / Fioranelli, Francesco / Wilaiprasitporn, Theerawit | IEEE | 2025


    Improved gait recognition based on specialized deep convolutional neural network

    Alotaibi, Munif / Mahmood, Ausif | British Library Online Contents | 2017


    Novel Approach for Gesture Recognition Using mmWave FMCW RADAR

    Zhao, Yanhua / Sark, Vladica / Krstic, Milos et al. | IEEE | 2022


    Automated Vehicle Recognition with Deep Convolutional Neural Networks

    Adu-Gyamfi, Yaw Okyere / Asare, Sampson Kwasi / Sharma, Anuj et al. | Transportation Research Record | 2017


    FMCW RADAR SYSTEM

    MITSUMOTO MASA / HIRATA KAZUFUMI | Europäisches Patentamt | 2015

    Freier Zugriff