Accurate and continuous prediction of vehicle trajectories is crucial for the secure deployment of intelligent transportation systems (ITS). Many previous approaches ignore the unique driving behaviors of individuals and have difficulty learning sequential dependencies effectively. However, the driver’s inherent driving pattern will directly impact the subsequent decision. Therefore, we propose a novel framework called Latent Individual Driving Pattern (LIDP), which models historical trajectories emphasizing individual driving patterns. Specifically, we introduce a novel contrastive loss to learn the individual driving pattern. Subsequently, we utilize a representation-augmented module to enhance the expressive capacity of each driving representation. We evaluate the proposed method on two real-world freeway trajectory datasets: US-101 and I-80 in the NGSIM highway dataset, and it achieves promising results, outperforming the recent vehicle trajectory prediction methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    LIDP: Contrastive Learning of Latent Individual Driving Pattern for Trajectory Prediction


    Beteiligte:
    Liu, Chunyu (Autor:in) / Yu, Jianjun (Autor:in) / Lin, Qiang (Autor:in)


    Erscheinungsdatum :

    08.05.2024


    Format / Umfang :

    1600693 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-Tail Trajectory Prediction

    Zhang, Junrui / Pourkeshavarz, Mozhgan / Rasouli, Amir | IEEE | 2024


    TRAJECTORY PREDICTION FOR DRIVING STRATEGY

    DOMLING MAXIMILIAN / GE YAO / NOTZ DOMINIK et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    TRAJECTORY PREDICTION FOR DRIVING STRATEGY

    XU GAOWEI / GE YAO / DOEMLING MAXIMILIAN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    TRAJECTORY PREDICTION FOR DRIVING STRATEGY

    GE YAO / DOEMLING MAXIMILIAN / NOTZ DOMINIK et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Distraction Monitoring for Driving Safety: A Contrastive Learning Approach

    Luo, Tongqiang / Zou, Hailin / Li, Yangguang et al. | IEEE | 2024