To address the 3D target tracking problem in urban environment, a multi-unmanned aerial vehicles (UAVs) coordinated framework based on distributed model predictive control (DMPC) and a novel Levy flight-Salp Swarm Algorithm (LSSA) is proposed in this paper. First, the related models for target tracking are established, including the UAV kinematic model, urban obstacle environment, and their corresponding constraints. Second, the DMPC framework for multi-UAVs target tracking is proposed. Third, a recently proposed intelligent searching algorithm: SSA, is selected as the solver of the DMPC problem. To further improve the global searching performance of SSA, the Levy flight strategy is introduced to SSA, and the novel modified SSA is LSSA. Finally, a series of simulations are carried out to show the effectiveness of our proposed framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-UAVs Target Tracking in Urban Environment Based on Distributed Model Predictive Control and Levy Flight-Salp Swarm Algorithm


    Beteiligte:
    Zhang, Menghua (Autor:in) / Wang, Honglun (Autor:in) / Wu, Jianfa (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    871269 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Solving Weapon-Target Assignment Problem with Salp Swarm Algorithm

    Avci, İsa / Yildirim, Mehmet | BASE | 2023

    Freier Zugriff

    Multiple cooperative UAVs target tracking using Learning Based Model Predictive Control

    Hafez, Ahmed. T. / Givigi, Sidney. N. / Ghamry, Khaled A. et al. | IEEE | 2015


    Salp Swarm Optimization:a Critical Review

    Castelli, Mauro / Manzoni, Luca / Mariot, Luca et al. | BASE | 2021

    Freier Zugriff

    Distributed Model Predictive Formation Control for UAVs and Cooperative Capability Evaluation of Swarm

    Ming Yang / Xiaoyi Guan / Mingming Shi et al. | DOAJ | 2025

    Freier Zugriff