Due to the configuration complexity of the diesel locomotive air brake system, it is difficult to realize the fault diagnosis on the brake system. In order to enhance fault diagnosis efficiency for diesel locomotive air brake system with uncertain fault, a fault diagnosis model based on Bayesian network is proposed in this paper. According to a priori exact probability or experts estimate that the probability, the classical Expectation-Maximization algorithm calculates the joint fault probability distribution and probability distribution of marginal respectively. Based on joint tree algorithm, Bayesian network is designed to infer the fault probabilities of components. The fault location could be realized. The simulation results indicate that the accurate fault probabilities could be calculated. Therefore, this method is effective for uncertain fault.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault Diagnosis Model of the Diesel Locomotive Air Brake System Based on Bayesian Network


    Beteiligte:
    Hu Lingling, (Autor:in) / Zhang Santong, (Autor:in)


    Erscheinungsdatum :

    01.11.2010


    Format / Umfang :

    228994 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fault Diagnosis Expert System of Locomotive Diesel Engine Based on Rules

    Junguo, W. / Quan, Y. / Shuyun, W. | British Library Online Contents | 2003


    Locomotive brake display and locomotive brake system

    SUN DAHAI / REN YUJIE / WU XIANGYU et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    Diesel locomotive TEM7A with an electric brake

    Kuznecov, V.S. | Tema Archiv | 1995


    Locomotive brake system

    LIU ZHIGUO / YANG JIAN / ZHANG ZHIPING | Europäisches Patentamt | 2020

    Freier Zugriff