We consider detecting object instances from multiple classes on grayscale images. Traditional approaches learn a classifier for each class separately and apply each of them in an exhaustive search over positions and scales. We achieve an efficient detection by organizing the search coarse-to-fine based on a hierarchical partitioning of the entire hypothesis space, the set of all possible object instances, so that groups of hypotheses can be pruned simultaneously without evaluating each one individually. In this paper, we develop an algorithm to jointly learn the hierarchy along with a classifier at each node by exploring the common parts shared among a group of object instances at all levels in the hierarchy. We also show how the confusions of the initial coarse-to-fine search can be resolved by comparing pairs of conflicting detections using cheap binary classifiers. The whole process is illustrated by detecting and recognizing handwritten digits.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient multiclass object detection by a hierarchy of classifiers


    Beteiligte:
    Xiaodong Fan, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    1137502 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection

    Torralba, A. / Murphy, K. / Freeman, W. et al. | British Library Conference Proceedings | 2004


    Sharing features: efficient boosting procedures for multiclass object detection

    Torralba, A. / Murphy, K.P. / Freeman, W.T. | IEEE | 2004


    Multi-class Object Detection in Vision Systems Using a Hierarchy of Cascaded Classifiers

    Kallenbach, I. / Schweiger, R. / Palm, G. et al. | British Library Conference Proceedings | 2006


    Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images

    Heisele, B. / Serre, T. / Mukherjee, S. et al. | British Library Conference Proceedings | 2001