In this study, we use the Vision Transformer (ViT) to pull out key features from driving video clips, aiming to understand how different participants perceive risks during driving. We then apply Counterfactual Causal Models to see how these features affect subjective driving risk among different individuals. By testing our approach with 10 participants, we found that it can personally identify which driving situations they find risky. By combining this causal analysis with the ViT's ability to understand scenes, our method showed better accuracy in detecting subjective risky situations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Personalized Causal Factor Generalization for Subjective Risky Scene Understanding with Vision Transformer


    Beteiligte:
    Bao, Naren (Autor:in) / Carballo, Alexander (Autor:in) / Tsukada, Manabu (Autor:in) / Takeda, Kazuya (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    2598506 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Causal Scene Understanding

    Cooper, P. R. / Birnbaum, L. A. / Brand, M. E. | British Library Online Contents | 1995


    Active Vision for Scene Understanding

    Grotz, Markus | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2021

    Freier Zugriff

    Active Vision for Scene Understanding

    Grotz, Markus | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2021

    Freier Zugriff

    Active Vision for Scene Understanding

    Grotz, Markus | Katalog Medizin | 2021


    Active Vision for Scene Understanding

    Grotz, Markus | TIBKAT | 2021

    Freier Zugriff