Aim to address the problem of low performance in existing gas leakage detection methods, an improved model based on MobileNetV3 is proposed. The transfer learning technique is used to train the improved model with a dataset of spectrograms generated from leaking audio. Comparative experiments show that the improved MobileNetV3 network model performs better than the MobileNetV3, VGG-16, and AlexNet network models in gas leak fault detection tasks. It also demonstrates that using the improved MobileNetV3 network model for gas leak fault detection has some usability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Gas Leak Fault Detection based on Improved MobileNetV3


    Beteiligte:
    Liu, Ping (Autor:in) / Xu, Yanwu (Autor:in) / Wang, Yingming (Autor:in) / Yu, Yongsheng (Autor:in)


    Erscheinungsdatum :

    04.08.2023


    Format / Umfang :

    1691518 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    RGBD-SLAM Based on Object Detection With Two-Stream YOLOv4-MobileNetv3 in Autonomous Driving

    Li, Gongfa / Fan, Hanwen / Jiang, Guozhang et al. | IEEE | 2024


    Leak, rupture detection can be improved

    Gordon, E. / Murphy, R.E. / Dean, P.D. | Tema Archiv | 1985


    Improved pipe leak and rupture detection

    Murphy, R.E. / Dean, P.D. / Gordon, E. | Tema Archiv | 1985


    Bleed air duct leak system real-time fault detection

    NORRIS ROBERT J | Europäisches Patentamt | 2017

    Freier Zugriff