According to the analysis of car accidents many casualties occur at intersections. As ongoing research demonstrates, Advanced Driver Assistance Systems that aim at preventing this type of accident, need to reliably predict the turning maneuver of all relevant participants in the scene. In this work an approach is introduced, which models human drivers as the optimizer of an optimal control problem with an unknown terminal state. Tracking the cost-to-go gradient to the terminal state of each driving option leads to the most plausible hypothesis. The optimal control problem itself is formulated with costs that minimize jerk, time and steering effort with good resemblance to typical human driving behavior. In combination with a simplified vehicle model this leads to a nonlinear constrained dynamic optimization problem, which is solved numerically. The performance of the proposed approach is evaluated on data obtained in a field test with promising results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Maneuver prediction at intersections using cost-to-go gradients


    Beteiligte:
    von Eichhorn, Andreas (Autor:in) / Werling, Moritz (Autor:in) / Zahn, Peter (Autor:in) / Schramm, Dieter (Autor:in)


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    1027085 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Personalized Maneuver Prediction at Intersections

    Losing, Viktor / Hammer, Barbara / Wersing, Heiko | BASE | 2017

    Freier Zugriff

    Personalized maneuver prediction at intersections

    Losing, Viktor / Hammer, Barbara / Wersing, Heiko | IEEE | 2017


    Infrastructure-based vehicle maneuver estimation at urban intersections

    Schendzielorz, T. / Mathias, P. / Busch, F. | IEEE | 2013



    Maneuver Coordination Using V2I to Improve Traffic Efficiency at Intersections

    Farina, Lorenzo / Rapelli, Marco / Masini, Barbara Mavi et al. | IEEE | 2024