There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed. Closing this gap necessitates advancements in prediction beyond current practices. Existing prediction models yield joint predictions of agents’ future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents. Although, these methods achieve high accurate trajectory predictions, they only provide little or no information about the dependencies of interacting agents. Since traffic is a process of highly interdependent agents, whose actions directly influence their mutual behavior, the existing methods are not sufficient to reliably assess the risk of future trajectories. This paper addresses that gap by introducing a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a "scene-centric" manner, which can then be used to model Gaussian joint PDFs for all agent-pairs in a scene. We propose a model capable of predicting those agent-pair covariance matrices, leveraging an enhanced awareness of interactions. Utilizing the prediction results of our model, this work forms the foundation for comprehensive risk assessment with statistically based methods for analyzing agents’ relations by their joint PDFs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction


    Beteiligte:
    Steiner, Marlon (Autor:in) / Klemp, Marvin (Autor:in) / Stiller, Christoph (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1552047 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CASPNet++: Joint Multi-Agent Motion Prediction

    Schafer, Maximilian / Zhao, Kun / Kummert, Anton | IEEE | 2024



    Multi-agent trajectory prediction

    NARAYANAN SRIRAM NOCHUR / LIU BUYU / MOSLEMI RAMIN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    MULTI-AGENT TRAJECTORY PREDICTION

    NARAYANAN SRIRAM NOCHUR / LIU BUYU / MOSLEMI RAMIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Multi-modal multi-agent trajectory prediction

    SUN PEI / ZHAO HANG / MCCAULEY ALEXANDER et al. | Europäisches Patentamt | 2024

    Freier Zugriff