This paper presents an axiomatic approach to corner detection. In the first part of the paper we review five currently used corner detection methods (Harris-Stephens, Forstner, Shi-Tomasi, Rohr, and Kenney et al ) for graylevel images. This is followed by a discussion of extending these corner detectors to images with different pixel dimensions such as signals (pixel dimension one) and tomographic medical images (pixel dimension three) as well as different intensity dimensions such as color or LADAR images (intensity dimension three). These extensions are motivated by analyzing a particular example of optical flow in pixel and intensity space with arbitrary dimensions. Placing corner detection in a general setting enables us to state four axioms that any corner detector might reasonably be required to satisfy. Our main result is that only the Shi-Tomasi (and equivalently the Kenney et al. 2-norm detector) satisfy all four of the axioms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An axiomatic approach to corner detection


    Beteiligte:
    Kenney, C.S. (Autor:in) / Zuliani, M. (Autor:in) / Manjunath, B.S. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    164300 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Interpolating Orientation Fields: An Axiomatic Approach

    Chessel, A. / Cao, F. / Fablet, R. | British Library Conference Proceedings | 2006


    Port pricing: a cost axiomatic approach

    Talley, Wayne K. | Taylor & Francis Verlag | 1994


    Port pricing: a cost axiomatic approach

    Talley, W.K. | Online Contents | 1994


    An axiomatic approach to clustering line-segments

    Jonk, A. / Smeulders, A.W.M. | IEEE | 1995


    An Axiomatic Approach to Clustering Line-Segments

    Jonk, A. / Smeulders, A. W. M. | British Library Conference Proceedings | 1995