In this paper, we propose a novel framework for face super-resolution based on a layered predictor network. In the first layer, multiple predictors are trained online with a dynamic-constructed training set, which is adaptively selected in order to make the trained model tailored to the testing face. When the dynamic training set is obtained, the optimum predictor can be learned based on the resampling-maximum likelihood-model. To further enhance the robustness of prediction and the smoothness of the hallucinated image, additional layers are designed to fuse multiple predictors with the fusion rule learned from the training set. Experiments fully demonstrate the effectiveness of the framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Layered local prediction network with dynamic learning for face super-resolution


    Beteiligte:
    Dahua Lin, (Autor:in) / Wei Liu, (Autor:in) / Xiaoou Tang, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    185187 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Layered Local Prediction Network with Dynamic Learning for Face Super-resolution

    Lin, D. / Liu, W. / Tang, X. | British Library Conference Proceedings | 2005


    Learning-Based Super-Resolution of 3D Face Model

    Peng, S. / Pan, G. / Wu, Z. | British Library Conference Proceedings | 2005


    Learning-based super-resolution of 3D face model

    Shiqi Peng, / Gang Pan, / Zhaohui Wu, | IEEE | 2005


    Super-Resolution of 3D Face

    Pan, G. / Han, S. / Wu, Z. et al. | British Library Conference Proceedings | 2006