In this paper, we present a novel method for pose invariant face detection in color images. The novelty in our method of face detection arises from the integration of evidence from various independent sources such as color, frequency response and geometric shape information. Skin color is detected in the Y-Cb-Cr color space using a RPROP neural network. The shape information is derived from a novel ellipse area criterion and then it is formulated to compute a probabilistic score of the connected components that represent the faces in the images. The third source is based on Gabor 2D filters that are used to obtain frequency signatures of faces in the images. The final likelihood of a face is a combination of the individual probabilities of color, shape and Gabor response.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pose invariant face detection


    Beteiligte:


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    426090 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pose Invariant Face Detection

    Seshadrinathan, M. / Ben-Arie, J. / IEEE et al. | British Library Conference Proceedings | 2003



    Matching Tensors for Pose Invariant Automatic 3D Face Recognition

    Mian, A.S. / Bennamoun, M. / Owens, R.A. | IEEE | 2005


    Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting

    Jourabloo, A. / Liu, X. | British Library Online Contents | 2017


    Robust pose invariant face recognition using coupled latent space discriminant analysis

    Sharma, A. / Haj, M. A. / Choi, J. et al. | British Library Online Contents | 2012