A new compressed image sensing approach is presented. The approach departs from conventional sensing mechanism which seeks incoherency between the sensing and representation vectors. The subspace where most energy of the image lies in is first identified (estimated). Sensing vectors are then selected in the subspace. In doing so, base vectors of discrete cosine transform are used as representation vectors, and low-frequency members of the base vectors are considered to form the subspace. Of those selected base vectors some are used as sensing vectors which are phase shifted to enhance incoherency. Experimental results prove that the new approach is significantly better than random sensing as previously used for compressed sensing.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Subspace imaging compressive sensing


    Beteiligte:
    Dakhil, Balsam (Autor:in) / Zheng, Yuan F. (Autor:in) / Ewing, Robert L. (Autor:in)


    Erscheinungsdatum :

    01.06.2014


    Format / Umfang :

    1176350 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Compressive sensing underwater laser serial imaging system

    Ouyang, B. / Dalgleish, F.R. / Caimi, F.M. et al. | British Library Online Contents | 2013


    On compressive sensing applied to SAR imaging

    Peng, X. / Chunsheng, L. / Ze, Y. | British Library Online Contents | 2011


    Ultrafast Imaging With Optical Encoding and Compressive Sensing

    Matin, Amir | British Library Online Contents | 2019


    Special Section Guest Editorial: Compressive Sensing for Imaging

    Ahmad, F. / Arce, G. / Narayanan, R. et al. | British Library Online Contents | 2013