The deployment of generative adversarial networks (GANs) in wireless networks faces three key challenges of limited devices’ computational capability, scarce communication resources, and severe data privacy leakage. To address these issues, this paper proposes a new distributed framework for training GANs based on ensemble learning. First, multiple discriminators are trained at many devices using their local datasets. A generator is then trained at a central server by aggregating devices’ discriminators in an ensemble manner. The per-round training time is established. Finally, simulation results show that the proposed framework can simultaneously reduce the training time and improve the learning performance as compared with an existing framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ensemble-Based Distributed Learning for Generative Adversarial Networks


    Beteiligte:
    Liu, Chonghe (Autor:in) / Ren, Jinke (Autor:in) / Yu, Guanding (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    553447 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intraoperative organ motion models with an ensemble of conditional generative adversarial networks

    Hu, Y / Gibson, E / Vercauteren, T et al. | BASE | 2020

    Freier Zugriff

    Intraoperative Organ Motion Models with an Ensemble of Conditional Generative Adversarial Networks

    Hu, Y / Gibson, E / Vercauteren, T et al. | BASE | 2017

    Freier Zugriff


    Crack Detection Based on Generative Adversarial Networks and Deep Learning

    Chen, Gongfa / Teng, Shuai / Lin, Mansheng et al. | Springer Verlag | 2022