In this paper, a novel hyperspectral image clustering procedure, which is based upon the Fully Constrained Least Squares (FCLS) spectral unmixing method, is proposed. The proposed clustering method consists of three major steps: endmember extraction, unmixing procedure and hardening process via the winner-takes-all approach. To estimate the optimal number of endmembers, instead of using the background signal subspace identification methods, the number of endmembers is varied in a predefined interval and the commonly accepted VCA (Vertex Component Analysis) algorithm is employed to extract the endmembers' spectra. At each iteration, the bandwise Root Mean Square Error (RMSE) between the reconstructed image, obtained from estimated fractions. and the original image is computed and the mean of all bandwise RMSEs is regarded as a measure to choose the optimum number of endmembers. Experiments conducted on the Indian Pines challenging dataset proved the superiority of proposed method over the K-Means and Fuzzy c-Means methods in terms of the widely used Adjusted Rand Index measure.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A novel hyperspectral image clustering method based on spectral unmixing


    Beteiligte:


    Erscheinungsdatum :

    01.03.2012


    Format / Umfang :

    794276 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A decision fusion approach for clustering of hyperspectral data using spectral unmixing methods

    Gholizadeh, Hamed / Zoej, Mohammad Javad Valadan / Mojaradi, Barat | IEEE | 2012


    Joint Blind Deconvolution and Spectral Unmixing of Hyperspectral Images

    Zhang, Q. | British Library Conference Proceedings | 2014


    Experimental Study of Hierarchical Clustering for Unmixing of Hyperspectral Images

    Prades, Jose / Salazar, Addisson / Safont, Gonzalo et al. | IEEE | 2021


    Null Subspace Analysis for Spectral Unmixing in Hyperspectral Remote Sensing

    Luo, Wenfei / Zhong, Liang / Zhang, Bing | IEEE | 2008


    Spectral-Spatial Joint Sparsity Unmixing of Hyperspectral Data using Overcomplete Dictionaries

    Bieniarz, Jakub / Aguilera, Esteban / Zhu, Xiao Xiang et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2014

    Freier Zugriff