Recently, non-contact vital sign estimating devices, which are used for health monitoring, have gradually gained interest among researchers. However, most of these devices have the disadvantages of high power consumption and high cost, which limit their practicality. Therefore, a less-expensive radar-based system is suggested for long-term health monitoring. Existing radar-based vital sign estimating schemes introduce unacceptable estimating errors. In order to improve the precision and stability, we employ Newtonized Orthogonal Matching Pursuit (NOMP) algorithm. NOMP provides better estimating results compared to existing schemes in vital sign estimation tasks. However, the performance of NOMP deteriorates severely under conditions of low signal-to-noise ratio, which causes poor power efficiency. In this study, we propose deep learning (DL)-aided NOMP schemes to tackle the aforementioned issue. Our simulation results and over the air measurements suggest that DL-aided NOMP schemes are superior to existing schemes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DL-Aided NOMP: a Deep Learning-Based Vital Sign Estimating Scheme Using FMCW Radar


    Beteiligte:
    Chang, Hsin-Yuan (Autor:in) / Lin, Chia-Hung (Autor:in) / Lin, Yu-Chien (Autor:in) / Chung, Wei-Ho (Autor:in) / Lee, Ta-Sung (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    752216 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Wireless Multi-Target Vital Sign Detection Using SIMO-FMCW Radar in Multipath Propagation Environments

    Lin, Po-Yen / Chang, Hsin-Yuan / Chang, Ronald Y. et al. | IEEE | 2023


    Spatio-Temporal Dense Network for Vital Signs Detection Using FMCW Radar

    Zhao, Qian / Li, Hongchun / Tian, Jun et al. | IEEE | 2023



    FMCW Apparatus for estimating length of vehicle using FMCW Radar and thereof method

    KIM KYUNG TAE / PARK JEONG KI | Europäisches Patentamt | 2023

    Freier Zugriff