With the availability of high performance miniaturized electronics, sounding balloons have become a viable options to conduct scientific experiments and commercial missions in the stratosphere, acting as a reduced size, low mass, low cost alternative to large zero-pressure or superpressure balloons. This paper explores the use of deep reinforcement learning for controlling a stratospheric sounding balloon to perform station-keeping over a specified area. In particular, we implement the deep Q-network (DQN) algorithm to learn a control policy for the balloon by exploiting different wind directions at different altitudes, reached by dropping ballast or releasing lifting gas. We conduct experiments using a simulation environment and evaluate the performance of the trained DQN model in real historical data. Our results show that the DQN algorithm can effectively learn a control policy that achieves satisfactory station-keeping with a high success rate, outperforming other, more direct control approaches. Our study presents a possible solution for the control of stratospheric sounding balloons in various applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Navigation of Sounding Balloons with Deep Reinforcement Learning


    Beteiligte:


    Erscheinungsdatum :

    19.06.2023


    Format / Umfang :

    559623 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vertical Sounding Balloons for Long Duration Flights

    Malaterre, P. | Online Contents | 1994


    Vertical Sounding Balloons for Long Duration Flights

    Malaterre, P. / The Committee on Space Research | British Library Conference Proceedings | 1993



    Universal Data Handling System for Sounding Rockets and Balloons

    Andersson, G. | TIBKAT | 2015

    Freier Zugriff