This paper presents a new method for the exponential Radon transform inversion based on harmonic analysis of the Euclidean motion group (M(2)). The exponential Radon transform is modified to be formulated as a convolution over M(2). The convolution representation leads to a block diagonalization of the modified exponential Radon transform in the Euclidean motion group Fourier domain, which provides a deconvolution type inversion for the exponential Radon transform. Numerical examples are presented to show the viability of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Exponential Radon transform inversion based on harmonic analysis of the Euclidean motion group


    Beteiligte:
    Yarman, C.E. (Autor:in) / Yazici, B. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    110075 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exponential Radon Transform Inversion Based on Harmonic Analysis of the Euclidean Motion Group

    Yarman, C. E. / Yazici, B. | British Library Conference Proceedings | 2005


    Motion Analysis with the Radon Transform on Log-Polar Images

    Traver, V. J. | British Library Online Contents | 2008


    Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group

    Duits, R. / Felsberg, M. / Granlund, G. s. et al. | British Library Online Contents | 2007


    Circular Radon Transform

    Kotlyar, V. V. / Kovalev, A. A. | British Library Online Contents | 2004


    Local inversion of the radon transform in the plane using wavelets [2034-09]

    Walnut, D. / SPIE | British Library Conference Proceedings | 1993