Sparse representation-based classification (SRC) has become one of the most powerful methods for robust face recognition. However, there are some limitations of SRC performance at the presence of noise, occlusion, and illumination variation problems, which make it unstable. Therefore, we investigate the performance of SRC under different data conditions by applying the most powerful optimization methods based on SRC and focusing on the corrections between data samples and the sparseness. For evaluation, we utilize several challenging face datasets that include diversity of illumination and occlusion conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sparse representation based classification performance under different optimization forms for face recognition


    Beteiligte:


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    448157 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust face recognition via low-rank sparse representation-based classification

    Du, H. S. / Hu, Q. P. / Qiao, D. F. et al. | British Library Online Contents | 2015


    Robust face recognition via gradient-based sparse representation

    Ma, P. / Yang, D. / Ge, Y. et al. | British Library Online Contents | 2013


    Two-stage sparse representation-based face recognition with reconstructed images

    Cheng, G. / Song, Z. / Lei, Y. et al. | British Library Online Contents | 2014


    Robust face recognition using sparse representation in LDA space

    Adamo, A. | British Library Online Contents | 2015


    Modified Local Binary Pattern for Human Face Recognition Based on Sparse Representation

    Mawloud, Guermoui / Djame, Melaab | British Library Online Contents | 2014