In this paper, we present a novel technique to estimate vehicle speed on highway using stereo images. First, traffic images are captured using calibrated and synchronized stereo cameras, then we detect moving vehicles on the left image by subtracting the background image. On each detected vehicle, we extract and match Speed Up Robust Features (SURF) in order to compute sparse depth maps. Finally, we get vehicle speed from vehicle depth variation using some geometric derivations. The experiments shows that the proposed algorithm has a satisfactory estimation of vehicle speed comparing to GPS ground truth with a speed error of 2 Km/h in the Moroccan environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle speed estimation using extracted SURF features from stereo images


    Beteiligte:


    Erscheinungsdatum :

    01.04.2018


    Format / Umfang :

    340574 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Stereo Matching for Binocular Underwater Images Using SURF Operator and Epipolar Restriction

    Wang, N. / Peng, B.b. / Zhu, D. et al. | British Library Conference Proceedings | 2014


    Stereo Matching for Binocular Underwater Images Using SURF Operator and Epipolar Restriction

    Wang, Nengjun / Peng, Bin bin / Zhu, Daqi et al. | Springer Verlag | 2014


    Vehicle Detection and Disparity Estimation Using Blended Stereo Images

    Zhou, Changxin / Liu, Yazhou / Sun, Quansen et al. | IEEE | 2021


    Impervious Surface Detection from Multispectral Images Using Surf

    Paulose, A. / Sreeraj, M. / Harikrishnan, V. | British Library Conference Proceedings | 2014


    Impervious Surface Detection from Multispectral Images Using Surf

    Paulose, Anu / M., Sreeraj / V., Harikrishnan | Springer Verlag | 2014