In this paper, we propose a novel learning method, called Jensen-Shannon Boosting (JSBoost) and demonstrate its application to object recognition. JSBoost incorporates Jensen-Shannon (JS) divergence [Y. Bubner et al. (2001)] into AdaBoost learning. JS divergence is advantageous in that it provides more appropriate measure of dissimilarity between two classes and it is numerically more stable than other measures such as Kullback-Leibler (KL) divergence (see [Y. Bubner et al. (2001)]). The best features are iteratively learned by maximizing the projected JS divergence, based on which best weak classifiers are derived. The weak classifiers are combined into a strong one by minimizing the recognition error. JSBoost learning is demonstrated with face object recognition using a local binary pattern (LBP) [M. Pietikainen et al. (2004)] based representation. JSBoost selects the best LBP features from thousands of candidate features and constructs a strong classifier based on the selected features. JSBoost empirically produces better face recognition results than other AdaBoost variants such as RealBoost [R.E. Schapire et al. (1998)], GentleBoost [J. Friedman et al. (2000)] and KL-Boost [C. Liu et al. (2003)], as demonstrated by experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Jensen-Shannon boosting learning for object recognition


    Beteiligte:
    Xiangsheng Huang, (Autor:in) / Li, S.Z. (Autor:in) / Yangsheng Wang, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    259667 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Graph Kernels from the Jensen-Shannon Divergence

    Bai, L. | British Library Online Contents | 2013


    An Analysis of Edge Detection by Using the Jensen-Shannon Divergence

    Gomez-Lopera, J. F. / Martinez-Aroza, J. / Robles-Perez, A. M. et al. | British Library Online Contents | 2000



    Karl Jensen

    Lützhöft, Nicolaus | DataCite | 1927


    Jensen Interceptor

    Taylor, Mike | TIBKAT | 1988