This paper proposes an improved nonparametric regression (INPR) algorithm for forecasting traffic flows and its application in automatic detection of traffic incidents. The INPRA is constructed based on the searching method of nearest neighbors for a traffic-state vector and its main advantage lies in forecasting through possible trends of traffic flows, instead of just current traffic states, as commonly used in previous forecasting algorithms. Various simulation results have indicated the viability and effectiveness of the proposed new algorithm. Several performance tests have been conducted using actual traffic data sets and results demonstrate that INPRs average absolute forecast errors, average relative forecast errors, and average computing times are the smallest comparing with other forecasting algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic-incident detection-algorithm based on nonparametric regression


    Beteiligte:
    Shuming Tang, (Autor:in) / Haijun Gao, (Autor:in)


    Erscheinungsdatum :

    01.03.2005


    Format / Umfang :

    637017 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic-Incident Detection-Algorithm Based on Nonparametric Regression

    Tang, S. / Gao, H. / IEEE | British Library Conference Proceedings | 2005


    Application of nonparametric regression in predicting traffic incident duration

    Shi Wang / Ruimin Li / Min Guo | DOAJ | 2018

    Freier Zugriff


    TRAFFIC INCIDENT DETECTION ALGORITHM BASED ON NON-PARAMETER REGRESSION

    Tang, S. / Gong, X. / Wang, F.-Y. et al. | British Library Conference Proceedings | 2002


    Traffic incident detection algorithm based on non-parameter regression

    Tang Shuming, / Gong Xiaoyan, / Wang Feiyue, | IEEE | 2002