This paper proposes a Kalman filter based state-of-charge (SOC) estimation MATLAB function using a second-order RC equivalent circuit model (ECM). The function requires the SOC-OCV (open circuit voltage) curve, internal resistance, and second-order RC ECM battery parameters. Users have an option to use an extended Kalman filter (EKF) or adaptive extended Kalman filter (AEKF) algorithms as well as temperature dependent battery data. An example of the function is illustrated using the LA92 driving cycle of a Turnigy battery performed at multiple temperature ranging from −10°C to 40°C.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Kalman Filter Based Battery State of Charge Estimation MATLAB Function


    Beteiligte:
    Khanum, Fauzia (Autor:in) / Louback, Eduardo (Autor:in) / Duperly, Federico (Autor:in) / Jenkins, Colleen (Autor:in) / Kollmeyer, Phillip J. (Autor:in) / Emadi, Ali (Autor:in)


    Erscheinungsdatum :

    21.06.2021


    Format / Umfang :

    546361 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improved battery state-of-charge estimation based on Kalman filter

    Ying, X. / Ying, S. | British Library Online Contents | 2014


    Ni-MH battery state-of-charge estimation based on Kalman filter

    Hongjie, W. / Bojin, Q. / Minxin, Z. et al. | British Library Online Contents | 2007



    Battery State-of-charge Estimation Using Interactive Multiple-model Kalman Filter

    Xia, Xiaohu / Liu, Ming | British Library Online Contents | 2017


    Extended Kalman Filter based battery state of charge(SOC) estimation for electric vehicles

    Chenguang Jiang / Taylor, Allan / Chen Duan et al. | IEEE | 2013