This paper presents an algorithm for chasing target aircraft in air combat scenarios, focusing on explainability and safety. Unlike conventional approaches utilizing reinforcement learning, our method employs a problem-specific neural network architecture with one hidden layer, trained online to track the desired path and heading angle in a 3D environment. The algorithm distinguishes between offensive and defensive modes, selecting optimal positions for the tracker aircraft and controlling it accordingly. We introduce a different training procedure where the neural network learns from the system responses without labeled output information, ensuring quick convergence and explainability. Through simulations, we demonstrate the reliability and effectiveness of our algorithm and neuro-controller structure with the help of decision tree structure in air-to-air combat tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Explainable and Fast-Converging Artificial Intelligence Solution to Control a Nonlinear Aircraft Model in Air Combat


    Beteiligte:
    Erdogan, Enes (Autor:in) / Baspinar, Baris (Autor:in)


    Erscheinungsdatum :

    29.09.2024


    Format / Umfang :

    1851147 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Artificial intelligence and its impact on combat aircraft

    Ott, Lawrence M. / Abbot, Kathy / Kleider, Alfred et al. | NTRS | 1987


    Artificial Intelligence and Its Impact on Combat Aircraft

    L. M. Ott / K. Abbot / A. Kleider et al. | NTIS | 1987


    ONBOARD EXPLAINABLE ARTIFICIAL INTELLIGENCE

    Faggioli, Guglielmo / Varile, Mattia | TIBKAT | 2022


    AIRCRAFT INSPECTION AUTOMATION SYSTEM BASED ON IMAGE AND EXPLAINABLE ARTIFICIAL INTELLIGENCE

    LEE CHEOL HEE / KIM TAE HWAN / LEE KANG SUK et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Explainable and responsible artificial intelligence

    Meske, Christian / Abedin, Babak / Klier, Mathias et al. | Online Contents | 2022

    Freier Zugriff