This paper deals with the problem of designing robust centralized fusion Kalman filters for the multisensor time-varying system with uncertain noise variances. According to the minimax robust estimation principle, based on the worst-case conservative system with conservative upper bounds of noise variances, applying the unbiased linear minimum variance optimal estimation rule, the robust centralized fusion time-varying Kalman filters are presented. Its robustness is proved by the Lyapunov equation approach. The robust accuracy relations of the local and centralized fused robust time-varying Kalman filters are proved. A simulation example verifies the robustness and robust accuracy relations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust centralized fusion time-varying Kalman filters


    Beteiligte:
    Qi, Wenjuan (Autor:in) / Sheng, Zunbing (Autor:in) / Shen, Cong (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    108973 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimal and Self-correcting Covariance Intersection Fusion Kalman Filters

    Zhang, Peng / Liu, Jinfang | Springer Verlag | 2021


    Kalman and smooth variable structure filters for robust estimation

    Gadsden, Stephen Andrew / Habibi, Saeid / Kirubarajan, Thia | IEEE | 2014


    Polynomial Kalman Filters

    Musoff, Howard / Zarchan, Paul | AIAA | 2005


    Polynomial Kalman Filters

    Zarchan, Paul / Musoff, Howard | AIAA | 2015