In this study, we address the challenge of traversability analysis for autonomous vehicles in diverse environments, leveraging LiDAR sensors. We propose the Transformer-Voxel-Bird’s eye view (BEV) Network (TVBNet), a novel dual-branch framework designed to increase the accuracy and versatility of such analyses in both urban and off-road conditions. TVBNet first preprocesses raw point cloud data through voxelization and the generation of a BEV. It incorporates a Transformer network with a rotational attention mechanism to aggregate features from multiple point cloud frames, capturing long-range correlations both within and between point clouds. Additionally, a Swin Transformer extracts the relative positional relationships in the BEV projection, facilitating a comprehensive understanding of the scene. The fusion of data from both branches via a multisource feature fusion module, which employs a context aggregation mechanism based on a residual structure, allows for robust local to global contextual understanding. This approach not only improves the extraction of correlation features between 2D BEV and 3D voxel data but also demonstrates superior performance on the challenging off-road dataset RELLIS-3D and the urban dataset SemanticKITTI.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dual-Branch Transformer Network for Enhancing LiDAR-Based Traversability Analysis in Autonomous Vehicles


    Beteiligte:
    Shao, Shiliang (Autor:in) / Shi, Xianyu (Autor:in) / Han, Guangjie (Autor:in) / Wang, Ting (Autor:in) / Song, Chunhe (Autor:in) / Zhang, Qi (Autor:in)


    Erscheinungsdatum :

    01.02.2025


    Format / Umfang :

    3579773 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning traversability models for autonomous mobile vehicles

    Shneier, M. | British Library Online Contents | 2008


    Fast terrain traversability estimation with terrestrial lidar in off-road autonomous navigation

    Goodin, Christopher / Dabbiru, Lalitha / Hudson, Christopher et al. | SPIE | 2021


    Traversability Analysis and Path Planning for Autonomous Wheeled Vehicles on Rigid Terrains

    Nan Wang / Xiang Li / Zhe Suo et al. | DOAJ | 2024

    Freier Zugriff

    Autonomous Vehicles Traversability Mapping Fusing Semantic–Geometric in Off-Road Navigation

    Bo Zhang / Weili Chen / Chaoming Xu et al. | DOAJ | 2024

    Freier Zugriff

    Collision-Aware Traversability Analysis for Autonomous Vehicles in the Context of Agricultural Robotics

    Philippe, Florian / Laconte, Johann / Lapray, Pierre-Jean et al. | ArXiv | 2024

    Freier Zugriff