LiDAR is crucial for robust 3D scene perception in autonomous driving. LiDAR perception has the largest body of literature after camera perception. However, multi-task learning across tasks like detection, segmentation, and motion estimation using LiDAR remains relatively unexplored, especially on automotive-grade embedded platforms. We present a real-time multi-task convolutional neural network for LiDAR-based object detection, semantics, and motion segmentation. The unified architecture comprises a shared encoder and task-specific decoders, enabling joint representation learning. We propose a novel Semantic Weighting and Guidance (SWAG) module to transfer semantic features for improved object detection selectively. Our heterogeneous training scheme combines diverse datasets and exploits complementary cues between tasks. The work provides the first embedded implementation unifying these key perception tasks from LiDAR point clouds achieving 3ms latency on the embedded NVIDIA Xavier platform. We achieve state-of-the-art results for two tasks, semantic and motion segmentation, and close to state-of-the-art performance for 3D object detection. By maximizing hardware efficiency and leveraging multi-task synergies, our method delivers an accurate and efficient solution tailored for real-world automated driving deployment. Qualitative results can be seen at https://youtu.be/H-hWRzv2lIY.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    LiDAR-BEVMTN: Real-Time LiDAR Bird’s-Eye View Multi-Task Perception Network for Autonomous Driving


    Beteiligte:
    Mohapatra, Sambit (Autor:in) / Yogamani, Senthil (Autor:in) / Ravi Kumar, Varun (Autor:in) / Milz, Stefan (Autor:in) / Gotzig, Heinrich (Autor:in) / Mader, Patrick (Autor:in)


    Erscheinungsdatum :

    01.02.2025


    Format / Umfang :

    1960925 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    BEVDetNet: Bird's Eye View LiDAR Point Cloud based Real-time 3D Object Detection for Autonomous Driving

    Mohapatra, Sambit / Yogamani, Senthil / Gotzig, Heinrich et al. | IEEE | 2021



    Autonomous driving: a bird's eye view

    Martínez‐Díaz, Margarita / Soriguera, Francesc / Pérez, Ignacio | Wiley | 2019

    Freier Zugriff

    Autonomous driving: a bird's eye view

    Martínez Díaz, Margarita / Soriguera Martí, Francesc / Pérez Pérez, Ignacio | BASE | 2019

    Freier Zugriff

    Autonomous driving: a bird's eye view

    Martínez-Díaz, Margarita / Soriguera, Francesc / Pérez, Ignacio | IET | 2018

    Freier Zugriff