Traffic flow prediction, which predicts the future flow using historic flows, is an important task in intelligent transportation systems (ITS). Efficient and accurate models for traffic flow prediction greatly contribute to the development of ITS. In this paper, we adopt the Gaussian process dynamical model (GPDM) to a fourth-order GPDM, which is more suitable for modeling traffic flow data. Specifically, the latent variables in the fourth-order GPDM is a fourth-order Markov Gaussian process, and the weighted $k$- NN is incorporated in the model to predict latent variables for efficient prediction. After training the model, the future flow is estimated by the average of the results predicted by the fourth-order GPDM and $k$- NN. Compared with other popular methods, the proposed method performs best and yields significant improvements of prediction performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High-Order Gaussian Process Dynamical Models for Traffic Flow Prediction


    Beteiligte:
    Zhao, Jing (Autor:in) / Sun, Shiliang (Autor:in)


    Erscheinungsdatum :

    01.07.2016


    Format / Umfang :

    759504 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic flow prediction method based on depth map Gaussian process

    JIANG YUNLIANG / FAN JINBIN / ZHANG XIONGTAO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Pedestrian Path, Pose and Intention Prediction through Gaussian Process Dynamical Models and Pedestrian Activity Recognition

    Quintero, Raul / Parra, Ignacio / Llorca, David Fernandez et al. | ArXiv | 2020

    Freier Zugriff

    Pedestrian Path, Pose, and Intention Prediction Through Gaussian Process Dynamical Models and Pedestrian Activity Recognition

    Quintero Minguez, Raul / Parra Alonso, Ignacio / Fernandez-Llorca, David et al. | IEEE | 2019


    Particle Hopping vs. Fluid-Dynamical Models for Traffic Flow

    Nagel, K. / German Supercomputing Center HLRZ | British Library Conference Proceedings | 1996