Enhancing the accuracy and reliability of perception systems in automated vehicles is critical, especially under varying driving conditions. Unfortunately, the challenges of adverse weather and low-visibility conditions can seriously degrade camera performance, introducing significant risks to vehicle safety. To address these concerns, in this study, we introduce a novel transformer-based 3D object detection model named ‘REDFormer’. By exploiting bird's-eye-view camera-radar fusion, the REDFormer offers a more practical and financially viable solution for tackling low-visibility conditions. We validate our model using the comprehensive nuScenes dataset, incorporating camera images, multi-radar point clouds, weather information, and time-of-day data. In comparative analyses, our model surpasses state-of-the-art benchmarks in both classification and detection accuracy. An in-depth ablation study further elucidates the individual contributions of each model component in overcoming the challenges posed by weather and lighting conditions. Experimental results specifically highlight the model's significant performance improvements, demonstrating a 31.31% increase in accuracy under rainy conditions and a 46.99% enhancement during nighttime scenarios, affirming REDFormer's potential as a robust and cost-effective solution for automated vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    REDFormer: Radar Enlightens the Darkness of Camera Perception With Transformers


    Beteiligte:
    Cui, Can (Autor:in) / Ma, Yunsheng (Autor:in) / Lu, Juanwu (Autor:in) / Wang, Ziran (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2024


    Format / Umfang :

    1821631 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi‐agent trajectory prediction with adaptive perception‐guided transformers

    Ngan Linh Nguyen / Myungsik Yoo | DOAJ | 2024

    Freier Zugriff

    Multi‐agent trajectory prediction with adaptive perception‐guided transformers

    Nguyen, Ngan Linh / Yoo, Myungsik | Wiley | 2024

    Freier Zugriff

    Darkness and light

    Stagl, Jeff | IuD Bahn | 2001


    Lighting the darkness

    British Library Online Contents | 1996