Document clustering is a powerful tool for browsing throughout a document database. Similar documents are gathered into several clusters and a representative document of each cluster is shown to users. To make users infer the content of the database from several representatives, the documents must be separated into tight clusters, in which documents are connected with high similarities. At the same time, clustering must be fast for user interaction. We propose an O(n/sup 2/) time, O(n) space cluster extraction method. It is faster than the ordinal clustering methods, and its clusters compare favorably with those produced by Complete Link for tightness. When we deal with OCR-ed documents, term loss caused by recognition faults can change similarities between documents. We also examined the effect of recognition faults to the performance of document clustering.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Clustering OCR-ed texts for browsing document image database


    Beteiligte:
    Tsuda, K. (Autor:in) / Senda, S. (Autor:in) / Minoh, M. (Autor:in) / Ikeda, K. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    427255 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Clustering OCR-ed Texts for Browsing Document Image Database

    Tsuda, K. / Senda, S. / Minoh, M. et al. | British Library Conference Proceedings | 1995


    A Document Browsing Tool: Using Lexical Classes to Convey Information

    Da Sylva, L. / Doll, F. / Canadian Society for Computational Studies of Intelligence | British Library Conference Proceedings | 2005



    Opaque Document Imaging: Building Images of Inaccessible Texts

    Lin, Y. / Seales, W. / IEEE | British Library Conference Proceedings | 2005


    Information-theoretic ensemble clustering on web texts

    Wang, Yang / Yuan, Kun / Liu, Hongfu et al. | British Library Online Contents | 2016