This paper describes a probabilistic method for real-time decision making and motion planning for autonomous vehicles. Our approach relies on the fact that driving on road networks implies a priori defined requirements that the motion planner should satisfy. Starting from an initial state of the vehicle, a map, the obstacles in the region of interest, and a goal region, we formulate the motion-planning problem as a nonlinear non-Gaussian estimation problem, which we solve using particle filtering. We assign probabilities to the generated trajectories according to their likelihood of obeying the driving requirements. Decision making and collision avoidance is naturally integrated in the approach. We develop a receding-horizon implementation and verify the method in simulated real road scenarios and in an experimental validation using a scaled mobile robot setup with car-like dynamics. The results show that the method generates dynamically feasible trajectories for a number of scenarios, such as collision avoidance, overtaking, and traffic-jam scenarios. In addition, the computation times and memory requirements indicate that the method is suitable for real-time implementation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Motion Planning of Autonomous Road Vehicles by Particle Filtering


    Beteiligte:
    Berntorp, Karl (Autor:in) / Hoang, Tru (Autor:in) / Di Cairano, Stefano (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    2189079 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A fast RRT algorithm for motion planning of autonomous road vehicles

    Ma, Liang / Xue, Jianru / Kawabata, Kuniaki et al. | IEEE | 2014


    Hierarchical motion planning for autonomous vehicles

    KROOP BENJAMIN / WAY MATTHEW / BRADLEY DAVID MCALLISTER | Europäisches Patentamt | 2019

    Freier Zugriff

    Pseudospectral Motion Planning for Autonomous Vehicles

    Gong, Qi / Lewis, L. R. / Ross, I. Michael | AIAA | 2009


    Dynamic motion planning of autonomous vehicles

    Shiller, Z. / Gwo, Y.R. | Tema Archiv | 1991