This paper provides a new methodology for the characterization of defect size in a conductive nonmagnetic plate from the measurement of the impedance variations. The methodology is based on Finite Element Method (FEM) combined with the Multi Output Support Vector Machines (MO-SVM). The MO-SVM is a statistical learning method that has good generalization capability and learning performance. FEM is used to create the adaptive database required to train the MO-SVM and the Cross Validation (CV) is used to find the parameters of MO-SVM model. The results show the applicability of MO-SVM to solve eddy current inverse problems instead of using traditional iterative inversion methods which can be very time-consuming. With the experimental results we demonstrate the accuracy which can be provided by the MO-SVM technique.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal database combining with Multi Output Support Vector Machine for Eddy Current Testing


    Beteiligte:
    Chelabi, Mohamed (Autor:in) / Hacib, Tarik (Autor:in) / Belli, Zoubida (Autor:in) / Mekideche, M. Rachid (Autor:in) / Le Bihan, Yann (Autor:in)


    Erscheinungsdatum :

    01.03.2014


    Format / Umfang :

    566306 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Eddy Current Testing

    Emerald Group Publishing | 1986


    Fuzzy Support Vector Machine-based Multi-agent Optimal Path

    Kumar T, Gireesh / Poornaselvan, K.J / Sethumadhavan, M. | BASE | 2010

    Freier Zugriff

    New Support Vector Machine with Multi-Input and Multi-Output Based on Adaptive Grouping

    Mao, W. / Feng, Y. / Yan, G. | British Library Online Contents | 2013


    Improving Defect Detection in Eddy Current Testing using Multi-Frequency Rotating Eddy Current Strategy

    Carere, Federico / Sangiovanni, Silvia / Laracca, Marco et al. | IEEE | 2024