The Cell-Free Massive Multiple-Input Multiple-Output (CF-MIMO) system is a promising technology for beyond-fifth-generation (B-5G) networks. It involves deploying multiple access points (APs) with multiple antennas to serve groups of users (UEs) cooperatively. In this paper, we introduce two algorithms that utilize big data technology for interference identification and signal-to-interference-plus-noise ratio (SINR) prediction. These algorithms effectively identify user-level interference information and provide support for resource allocation. They outperform traditional machine learning methods in terms of accuracy, time efficiency, and computation complexity by a significant margin. To establish the theoretical foundation, we derive the closed form of the average SINR based on large-scale fading coefficients (LSFCs). Our results demonstrate that our algorithms significantly enhance prediction accuracy by 50%-75% and achieve an impressive 8-to 80-fold improvement in training efficiency compared to the benchmark scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Large-scale Fading Coefficients Mining-Based Interference Identification and SINR Prediction for Cell-Free Massive MIMO


    Beteiligte:
    Chen, Yue (Autor:in) / Peng, Tao (Autor:in) / Guo, Yichen (Autor:in) / Fan, Chunmeng (Autor:in) / Wang, Wenbo (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1691985 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Successive Interference Cancellation in Cell-free Massive MIMO-NOMA

    Nguyen, The Khai / Nguyen, Ha H. / Tuan, Hoang D. | IEEE | 2020



    Cell-Free Massive MIMO System With Dedicated Interference Cancellation Access Points

    Park, Sung-Min / Kim, Do-Yup / Kim, Kyeong-Won et al. | IEEE | 2023


    Interference suppression for distributed CPU deployments in Cell-Free massive MIMO

    Ikami, Akio / Tsukamoto, Yu / Aihara, Naoki et al. | IEEE | 2022