This paper describes the use of soft computing based techniques toward the acquisition of adaptive behaviors to be used in mobile exploration by cooperating robots. Navigation within unknown environments and the obtaining of dynamic behavior require some method of unsupervised learning given the impossibility of programming strategies to followfor each individual case and for every possible situation the robot may face. In this investigation in particular, it is intended to expose some of the benefits of cooperative learning robots using novel biologically inspired heuristic methods. Experiments were conducted using a Khepera mobile robot simulator which uses a neural network to generate behaviors based on robot sensor measurements. The training of this network was carried out with a Genetic Algorithm, where each individual is a neural network whose fitness functionis the output of a function, proportional to the are acovered by the robot.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cooperative Adaptive Behavior Acquisition in Mobile Robot Swarms Using Neural Networks and Genetic Algorithms


    Beteiligte:


    Erscheinungsdatum :

    01.09.2008


    Format / Umfang :

    870585 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robot Swarms

    Morring, Frank, Jr. | NTRS | 2005


    Acquiring Adaptive Behaviors of Mobile Robots Using Genetic Algorithms and Artificial Neural Networks

    Navarro, Nicol¿as / Munoz, Cesar / Freund, Wolfgang et al. | IEEE | 2006


    Network-topology Independent Cooperative Target-enclosing Behavior by Swarms of Vehicles

    Kawakami, H. / Namerikawa, T. | British Library Online Contents | 2009


    Social Exploration in Robot Swarms

    Hogg, Elliott / Harvey, David / Hauert, Sabine et al. | Springer Verlag | 2024


    Airborne Visual Tracking for Cooperative UAV Swarms

    Opromolla, Roberto / Vetrella, Amedeo Rodi / Fasano, Giancarmine et al. | AIAA | 2018