Matching taxi supply with demand is one of the biggest challenges faced by taxi fleet operators today. One of the reasons why this problem is so hard to solve is because there are no readily available methods to infer unmet taxi demand from data. An algorithm that reliably does so would be of enormous value to fleet operators because it could be used to dispatch available taxis to areas where passenger demand greatly exceeds supply. In this paper, we formally define unmet taxi demand and develop a heuristic algorithm to quantify it. We explain how our method improves on traditional approaches and present the theoretical details which underpin our algorithm. Finally, we develop a smartphone application that uses our algorithm together with a live taxi data feed to provide real time recommendations to participating drivers and efficiently route taxis to where they are needed most.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Inferring Unmet Demand from Taxi Probe Data


    Beteiligte:
    Afian, Anwar (Autor:in) / Odoni, Amedeo (Autor:in) / Rus, Daniela (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    987361 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TAXI DEMAND ESTIMATION SYSTEM

    ISHIGURO SHIN / FUKAZAWA YUSUKE / KIKUCHI YU et al. | Europäisches Patentamt | 2017

    Freier Zugriff

    Predicting Taxi–Passenger Demand Using Streaming Data

    Moreira-Matias, Luis / Gama, Joao / Ferreira, Michel et al. | IEEE | 2013


    Predicting Taxi-Passenger Demand Using Streaming Data

    Moreira-Matias, L | Online Contents | 2013


    Taxi Demand Prediction Using LSTM and Optimized Taxi Geo-distribution

    Patole, Deepti / Mehta, Raj / Mehta, Chintan et al. | Springer Verlag | 2021


    Real-Time Taxi Demand Prediction using data from the web

    Markou, Ioulia / Rodrigues, Filipe / Pereira, Francisco C. | IEEE | 2018