A novel active contour model named variable background active contour model is proposed and applied for the detection of thyroid nodules in ultrasound images. The new model offers edge independency, no need for smoothing, ability for topological changes and it is more accurate when compared to the active contour without edges model. Improved accuracy is achieved by introducing as background a limited image subset which appropriately changes shape to reduce the effects of background inhomogeneity. We validated the proposed model on ultrasound images acquired from 24 patients and the results demonstrate an improvement in accuracy when compared to the active contour without edges model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A variable background active contour model for automatic detection of thyroid nodules in ultrasound images


    Beteiligte:
    Savelonas, M. (Autor:in) / Maroulis, D. (Autor:in) / Iakovidis, D. (Autor:in) / Karkanis, S. (Autor:in) / Dimitropoulos, N. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    602131 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Variable Background Active Contour Model for Automatic Detection of Thyroid Nodules in Ultrasound Images

    Savelonas, M. / Maroulis, D. / Iakovidis, D. et al. | British Library Conference Proceedings | 2005



    Automatic Contour Detection by Encoding Knowledge into Active Contour Models

    Gerard, O. / Makram-Ebeid, S. | British Library Conference Proceedings | 1998


    Contour tracking on ultrasound sequences of vascular images

    Demi, M. / Bianchini, E. / Faita, F. et al. | British Library Online Contents | 2008


    Multigradient field-active contour model for multilayer boundary detection of ultrasound rectal wall image

    Xiao, D. / Ng, W. S. / Abeyratne, U. R. et al. | British Library Online Contents | 2005