The traffic density map (TDM) represents the density of road network traffic as the number of vehicles per a specific time interval. TDMs are used by traffic experts as a base documentation for planning a new infrastructure (long-term) or by drivers for showing a current traffic status (short-term). We propose two methods for estimation of missing density values in TDMs. In the first method, the problem is formulated relatively strictly in terms of quadratic programming (QP) and a QP solver is utilized to find a solution. The second, more general method is based on a multiobjective genetic algorithm which allows us to find a reasonable compromise among several objectives that a traffic expert may formulate. These two methods can work automatically or they can be used by a traffic expert for an iterative density estimation. Results of experimental evaluation based on real and randomly generated data are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimation of missing values in traffic density maps


    Beteiligte:
    Petrlik, Jiri (Autor:in) / Korcek, Pavol (Autor:in) / Fucik, Otto (Autor:in) / Beszedes, Marian (Autor:in) / Sekanina, Lukas (Autor:in)


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    536635 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Effect of missing values estimations on traffic parameters

    Sharma, Satish | Online Contents | 2004


    Effect of missing values estimations on traffic parameters

    Sharma, Satish / Lingras *, Pawan / Zhong, Ming | Taylor & Francis Verlag | 2004



    Matching Patterns for Updating Missing Values of Traffic Counts

    Zhong, Ming / Sharma, Satish / Lingras, Pawan | Taylor & Francis Verlag | 2006


    ST-FVGAN: filling series traffic missing values with generative adversarial network

    Yang, Bing / Kang, Yan / Yuan, Yaoyao et al. | Taylor & Francis Verlag | 2022