Navigation and control of an unmanned aerial vehicle (UAV) is a challenging problem and could be framed as a Reinforcement Learning (RL) task. Herein, we propose to use reinforcement learning for designing a UAV autopilot based on the Fuzzy Q Learning (FQL) approach. Proposed control scheme envisages an amalgamation of proportional (P) control that stabilizes the UAV and an action triggering Fuzzy Inference system (FIS) control that learns the correct control action to achieve the desired flight trajectory for a UAV flight. We test the proposed RL based UAV control for three cases: (i) Altitude control (ii) Trajectory Tracking, and (iii) Reconnaissance flight of a UAV. Results demonstrate the viability and effectiveness of a UAV autopilot designed using FQL.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fuzzy Q learning based UAV autopilot


    Beteiligte:


    Erscheinungsdatum :

    01.11.2014


    Format / Umfang :

    174785 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fuzzy autopilot for ship maneuvering

    Bhattacharyya, S.K. | Online Contents | 2011


    Autopilot Designed with Fuzzy Set Theory

    Zirilli, A. / Tiano, A. / Roberts, G. N. et al. | British Library Conference Proceedings | 2002


    A Fuzzy Autopilot for Small Vessels

    Polkinghorne, M. N. / Burns, R. S. / Roberts, G. N. | British Library Conference Proceedings | 1992


    Approaches to Fuzzy Autopilot Design Optimization

    Sutton, R. / Roberts, G. N. / International Federation of Automatic Control | British Library Conference Proceedings | 1997