Traffic flow forecasting is an important research subject related to social livelihood and economic development. How to improve the accuracy of traffic flow forecasting has been widely concerned by people. This paper proposes a traffic flow prediction model based on Transformer. The model uses GAT, which can dynamically aggregate spatial features, to model the spatial dependence of traffic flow. The self-attention mechanism in Transformer is used to adaptively capture long-term dependencies from traffic flow data to model time dependencies of traffic flow. Spatial-temporal coding is embedded in the feature vector of input data. The traffic flow prediction model is tested on six real-world traffic flow datasets, and compared with some classic baseline models, the traffic flow prediction model proposed in this paper has achieved good prediction performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Traffic Flow Forecasting Based on Spatial-Temporal Network


    Beteiligte:
    Chen, Xun (Autor:in) / Liang, Jinsu (Autor:in) / Deng, Linyi (Autor:in) / Xie, Tianyi (Autor:in)


    Erscheinungsdatum :

    21.03.2025


    Format / Umfang :

    1383781 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer

    Zhang, Hong / Wang, Hongyan / Zhang, Xijun et al. | Transportation Research Record | 2023


    Multi-Step Spatial-Temporal Fusion Network for Traffic Flow Forecasting*

    Dong, Honghui / Meng, Ziying / Wang, Yiming et al. | IEEE | 2021


    ClusterST: Clustering Spatial–Temporal Network for Traffic Forecasting

    Luo, Guiyang / Zhang, Hui / Yuan, Quan et al. | IEEE | 2023


    Spatial-Temporal Graph-Based Transformer Model for Traffic Flow Forecasting

    Wang, Qichao / He, Guojun / Lu, Peiyu et al. | IEEE | 2022


    Dynamic Spatial–Temporal Convolutional Networks for Traffic Flow Forecasting

    Zhang, Hong / Kan, Sunan / Zhang, XiJun et al. | Transportation Research Record | 2023