Accurate prediction of the driving intentions and trajectories of other vehicles is critical to the planning and control subsystem of the autonomous driving system. In addition to the driver's driving habits, the future driving intention and trajectory of a vehicle are the result of dynamic interactions with others around it, and the driver should have multiple executable driving trajectories to choose from at a given moment. In this paper, we propose a new interaction attention mechanism and a lightweight multi-modal maneuver-based trajectory prediction model. In addition, we consider it as multi-task model and put forward an adaptive task loss weighting scheme for further performance improving. We evaluate our method on dataset NGSIM US101, and the results show that the proposed model achieves the optimal performance, the lowest model complexity and our task loss weighting scheme can further improve the model performance compared to the original task loss scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MMTP: Multi-Modal Trajectory Prediction with Interaction Attention and Adaptive Task Weighting


    Beteiligte:
    Chen, Sihan (Autor:in) / Ma, Zhixiong (Autor:in) / Zhu, Xichan (Autor:in) / Wang, Chengkang (Autor:in) / Zheng, Lianqing (Autor:in) / Huang, Libo (Autor:in) / Bai, Jie (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1494268 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-modal trajectory prediction method

    JIANG WENJUAN / JIN ZHI / WANG REN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Multi-modal multi-agent trajectory prediction

    SUN PEI / ZHAO HANG / MCCAULEY ALEXANDER et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    MULTI-MODAL MULTI-AGENT TRAJECTORY PREDICTION

    SUN PEI / ZHAO HANG / MCCAULEY ALEXANDER et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    UMT-Net: A Uniform Multi-Task Network With Adaptive Task Weighting

    Chen, Sihan / Zheng, Lianqing / Huang, Libo et al. | IEEE | 2024